1 |
Collinson_2015 |
The Effects of Media Reports on Disease Spread and Important Public Health Measurements |
Collinson, Shannon; Khan, Kamran; Heffernan, Jane M. |
2015 |
2015-11-03 |
COMM-USE |
N |
PMC4631512 |
26528909.0 |
10.1371/journal.pone.0141423 |
bln4808g |
0.821059 |
|
Kim_L_2019, Zhou_2019 |
2 |
Uribe-Sánchez_2011 |
A predictive decision-aid methodology for dynamic mitigation of influenza pandemics |
Uribe-Sánchez, Andrés; Savachkin, Alex; Santana, Alfredo; Prieto-Santa, Diana; Das, Tapas K. |
2011 |
2011-05-07 |
PMC |
N |
PMC7080196 |
|
10.1007/s00291-011-0249-0 |
g3odc7da |
0.795009 |
|
Uribe-Sánchez_2010, Wu_J_2011, Bucini_2019 |
3 |
Yaesoubi_2016 |
Identifying Cost-Effective Dynamic Policies to Control Epidemics |
Yaesoubi, Reza; Cohen, Ted |
2016 |
2016-07-24 |
PMC |
N |
PMC5096998 |
27449759.0 |
10.1002/sim.7047 |
4ofxjlq6 |
0.747382 |
|
Park_2016, Bolzoni_2017, Chen_2018, Bucini_2019 |
4 |
Tracht_2010 |
Mathematical Modeling of the Effectiveness of Facemasks in Reducing the Spread of Novel Influenza A (H1N1) |
Tracht, Samantha M.; Del Valle, Sara Y.; Hyman, James M. |
2010 |
2010-02-10 |
COMM-USE |
N |
PMC2818714 |
20161764.0 |
10.1371/journal.pone.0009018 |
36bfeoqv |
0.728733 |
|
|
5 |
Hollingsworth_2011 |
Mitigation Strategies for Pandemic Influenza A: Balancing Conflicting Policy Objectives |
Hollingsworth, T. Déirdre; Klinkenberg, Don; Heesterbeek, Hans; Anderson, Roy M. |
2011 |
2011-02-10 |
COMM-USE |
N |
PMC3037387 |
21347316.0 |
10.1371/journal.pcbi.1001076 |
jzke8fop |
0.719888 |
|
|
6 |
Yan_X_2008 |
Optimal and sub-optimal quarantine and isolation control in SARS epidemics |
Yan, Xiefei; Zou, Yun |
2008 |
2008-01-31 |
PMC |
N |
PMC7125562 |
|
10.1016/j.mcm.2007.04.003 |
2xflheth |
0.692607 |
Bocharov_2018, Zheng_2020 |
Bolzoni_2017, Safi_2011 |
7 |
Neufeld_2020 |
Targeted adaptive isolation strategy for Covid-19 pandemic |
Zoltan Neufeld; Hamid Khataee |
2020 |
2020-03-31 |
BioRxiv |
Y |
|
|
10.1101/2020.03.23.20041897 |
80d9p4j8 |
0.683988 |
Wu_Q_2014 |
Kretzschmar_2020 |
8 |
Uribe-Sánchez_2010 |
Two resource distribution strategies for dynamic mitigation of influenza pandemics |
Uribe-Sánchez, Andrés; Savachkin, Alex |
2010 |
2010-07-07 |
PMC |
N |
PMC3004603 |
21197356.0 |
|
s21obnqy |
0.680694 |
|
Uribe-Sánchez_2011, Jenny_2020, Hollingsworth_2011 |
9 |
Augeraud-Veron_2020 |
How to quit confinement? French scenarios face to COVID-19 |
Emmanuelle Augeraud-Veron |
2020 |
2020-04-06 |
BioRxiv |
Y |
|
|
10.1101/2020.04.02.20051342 |
igxdatq1 |
0.673182 |
|
Smeets_2020, Yong_2016, Kretzschmar_2004 |
10 |
Kim_J_2016 |
Constrained optimal control applied to vaccination for influenza |
Kim, Jungeun; Kwon, Hee-Dae; Lee, Jeehyun |
2016 |
2016-06-30 |
PMC |
N |
PMC7125829 |
|
10.1016/j.camwa.2015.12.044 |
3j4mqf5x |
0.660483 |
|
Park_2016, Bolzoni_2017, Feng_2011 |
11 |
Ramsey_2020 |
Human agency and infection rates: implications for social distancing during epidemics |
Christopher Bronk Ramsey |
2020 |
2020-04-15 |
BioRxiv |
N |
|
|
10.1101/2020.04.11.20062042 |
dcmcog6l |
0.638107 |
Li_C_2018 |
Maharaj_2012, Safi_2011, Denphedtnong_2013 |
12 |
Lin_F_2010 |
An optimal control theory approach to non-pharmaceutical interventions |
Lin, Feng; Muthuraman, Kumar; Lawley, Mark |
2010 |
2010-02-19 |
COMM-USE |
N |
PMC2850906 |
20170501.0 |
10.1186/1471-2334-10-32 |
0x294f8t |
0.625575 |
Bocharov_2018 |
Bolzoni_2017, Park_2016, Yan_X_2008, Feng_2011 |
13 |
Mallela_2020 |
Optimal Control applied to a SEIR model of 2019-nCoV with social distancing |
Abhishek Mallela |
2020 |
2020-04-14 |
BioRxiv |
Y |
|
|
10.1101/2020.04.10.20061069 |
qm2qvcwk |
0.620331 |
Bocharov_2018, Chowell_2017 |
Yan_X_2008, Park_2016, Li_F_2018, Gao_D_2018 |
14 |
Sanchez-Taltavull_2020 |
Modelling strategies to organize healthcare workforce during pandemics: application to COVID-19 |
Daniel Sanchez-Taltavull; Daniel Candinas; Edgar Roldan; Guido Beldi |
2020 |
2020-03-27 |
BioRxiv |
Y |
|
|
10.1101/2020.03.23.20041863 |
viwochvv |
0.616044 |
|
|
15 |
Patterson-Lomba_2020 |
Optimal timing for social distancing during an epidemic |
Oscar Patterson-Lomba |
2020 |
2020-04-01 |
BioRxiv |
N |
|
|
10.1101/2020.03.30.20048132 |
cm91jxde |
0.588870 |
|
Maharaj_2012, Lauro_2020 |
16 |
Gersovitz_2014 |
Infectious Disease Externalities |
Gersovitz, M. |
2014 |
2014-12-31 |
PMC |
N |
PMC7149787 |
|
10.1016/b978-0-12-375678-7.00404-1 |
qb7faqa7 |
0.574683 |
|
|
17 |
Huang_2020 |
Role of vaccine efficacy in the vaccination behavior under myopic update rule on complex networks |
Huang, Jiechen; Wang, Juan; Xia, Chengyi |
2020 |
2020-01-31 |
PMC |
N |
PMC7111283 |
|
10.1016/j.chaos.2019.109425 |
mo4mvwch |
0.569076 |
Wu_Q_2014 |
Cai_C_2014, Wells_2011, Park_2016, Chen_2018 |
18 |
Djidjou-Demasse_2020 |
Optimal COVID-19 epidemic control until vaccine deployment |
Ramses Djidjou-Demasse; Yannis Michalakis; Marc Choisy; Micea T. Sofonea; Samuel Alizon |
2020 |
2020-04-06 |
BioRxiv |
Y |
|
|
10.1101/2020.04.02.20049189 |
5sdzyj0q |
0.564181 |
|
|
19 |
Wells_2011 |
Impact of Imitation Processes on the Effectiveness of Ring Vaccination |
Wells, Chad R.; Tchuenche, Jean M.; Meyers, Lauren Ancel; Galvani, Alison P.; Bauch, Chris T. |
2011 |
2011-03-16 |
PMC |
N |
PMC3409595 |
21409511.0 |
10.1007/s11538-011-9646-4 |
idfivpbo |
0.552445 |
Wu_Q_2014 |
Cai_C_2014, Huang_2020, Kretzschmar_2004 |
20 |
Zhong_2016 |
Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior |
Zhong, Wei |
2016 |
2016-11-29 |
PMC |
N |
PMC7087887 |
|
10.1007/s10588-016-9238-9 |
83pnvlpw |
0.551688 |
|
Andrews_2016, Wu_J_2011, Valle_2012 |
21 |
Nardin_2016 |
Planning horizon affects prophylactic decision-making and epidemic dynamics |
Luis G. Nardin; Craig R. Miller; Benjamin J. Ridenhour; Stephen M. Krone; Paul Joyce; Bert O. Baumgaertner |
2016 |
2016-08-12 |
BioRxiv |
N |
|
|
10.1101/069013 |
30kwl4rj |
0.551346 |
|
Bucini_2019, Andrews_2016 |
22 |
Duijzer_2017 |
Dose‐Optimal Vaccine Allocation over Multiple Populations |
Duijzer, Lotty E.; van Jaarsveld, Willem L.; Wallinga, Jacco; Dekker, Rommert |
2017 |
2017-10-19 |
None |
N |
PMC7168135 |
|
10.1111/poms.12788 |
ipb5qniu |
0.526949 |
Wu_Q_2014 |
|
23 |
Herrera-Diestra_2019 |
Local risk perception enhances epidemic control |
Herrera-Diestra, José L.; Meyers, Lauren Ancel |
2019 |
2019-12-03 |
COMM-USE |
N |
PMC6890219 |
31794551.0 |
10.1371/journal.pone.0225576 |
9c0zrp7p |
0.516820 |
|
Maharaj_2012 |
24 |
German_2020 |
Modeling Exit Strategies from COVID-19 Lockdown with a Focus on Antibody Tests |
Reinhard German; Anatoli Djanatliev; Lisa Maile; Peter Bazan; Holger Hackstein |
2020 |
2020-04-18 |
BioRxiv |
Y |
|
|
10.1101/2020.04.14.20063750 |
fux10x0w |
0.505580 |
|
|
25 |
Zhou_2019 |
Optimal media reporting intensity on mitigating spread of an emerging infectious disease |
Zhou, Weike; Xiao, Yanni; Heffernan, Jane Marie |
2019 |
2019-03-21 |
COMM-USE |
N |
PMC6428274 |
30897141.0 |
10.1371/journal.pone.0213898 |
vc29aif3 |
0.498235 |
Li_C_2018, Wu_Q_2014, Lloyd_2009, Gong_2013 |
Kim_L_2019 |
26 |
Maharaj_2012 |
Controlling epidemic spread by social distancing: Do it well or not at all |
Maharaj, Savi; Kleczkowski, Adam |
2012 |
2012-08-20 |
COMM-USE |
N |
PMC3563464 |
22905965.0 |
10.1186/1471-2458-12-679 |
54jnv4ki |
0.490964 |
|
Herrera-Diestra_2019, Pharaon_2018 |
27 |
Park_2016 |
A real option analysis for stochastic disease control and vaccine stockpile policy: An application to H1N1 in Korea |
Park, Hojeong |
2016 |
2016-02-29 |
PMC |
N |
|
|
10.1016/j.econmod.2015.12.005 |
ccmd0dw8 |
0.490361 |
|
Kretzschmar_2004, Chen_2018, Raja_Sekhara_Rao_2015, Fan_K_2020 |
28 |
Gao_D_2018 |
Optimal control analysis of a tuberculosis model |
Gao, Da-peng; Huang, Nan-jing |
2018 |
2018-06-30 |
PMC |
N |
|
|
10.1016/j.apm.2017.12.027 |
wh28s0ws |
0.488981 |
Bocharov_2018, Zheng_2020, Chowell_2017 |
Yan_X_2008, Bolzoni_2017, Iacoviello_2013, Mallela_2020 |
29 |
Bokharaie_2020 |
A Stratified Model to Quantify the Effects of Containment Policies on the Spread of COVID-19 |
Vahid S. Bokharaie |
2020 |
2020-04-14 |
BioRxiv |
Y |
|
|
10.1101/2020.04.10.20060681 |
rj9oj9ky |
0.488915 |
|
Kretzschmar_2020 |
30 |
Senapati_2019 |
Disease control through removal of population using Z-control approach |
Senapati, Abhishek; Panday, Pijush; Samanta, Sudip; Chattopadhyay, Joydev |
2019 |
2019-12-19 |
PMC |
N |
|
|
10.1016/j.physa.2019.123846 |
nsei3i8g |
0.487410 |
Li_C_2018, Wu_Q_2014, O'Dea_2010, Welch_2011 |
Raja_Sekhara_Rao_2015, Safi_2011, Denphedtnong_2013, Bolzoni_2017 |
31 |
Lauro_2020 |
The timing of one-shot interventions for epidemic control |
Francesco Di Lauro; István Z Kiss; Joel Miller |
2020 |
2020-03-06 |
BioRxiv |
Y |
|
|
10.1101/2020.03.02.20030007 |
zav5gksq |
0.480734 |
|
Djidjou-Demasse_2020 |
32 |
Feng_2011 |
Modeling the Effects of Vaccination and Treatment on Pandemic Influenza |
Feng, Zhilan; Towers, Sherry; Yang, Yiding |
2011 |
2011-06-08 |
PMC |
N |
PMC3160165 |
21656080.0 |
10.1208/s12248-011-9284-7 |
vv9l5hg1 |
0.478995 |
Bocharov_2018, Leach_2010, Wu_Q_2014 |
Raja_Sekhara_Rao_2015, Alexander_2009, Safi_2011 |
33 |
Cai_C_2014 |
Effect of vaccination strategies on the dynamic behavior of epidemic spreading and vaccine coverage |
Cai, Chao-Ran; Wu, Zhi-Xi; Guan, Jian-Yue |
2014 |
2014-06-30 |
PMC |
N |
PMC7126457 |
|
10.1016/j.chaos.2014.04.005 |
drj2hucu |
0.477933 |
Li_C_2018, Wu_Q_2014, Li_K_2011, Welch_2011 |
Chen_2018, Wells_2011, Huang_2020, Raja_Sekhara_Rao_2015 |
34 |
Wei_C_2020 |
The focus and timing of COVID-19 pandemic control measures under healthcare resource constraints |
Chen Wei; Zhengyang Wang; Zhichao Liang; Quanying Liu |
2020 |
2020-04-19 |
BioRxiv |
Y |
|
|
10.1101/2020.04.16.20067611 |
5psqro9d |
0.475557 |
Li_C_2018 |
|
35 |
He_Y_2015 |
Methodology of emergency medical logistics for public health emergencies |
He, Yuxuan; Liu, Nan |
2015 |
2015-07-31 |
PMC |
N |
PMC7147567 |
|
10.1016/j.tre.2015.04.007 |
yvn2c312 |
0.452516 |
|
|
36 |
Valle_2012 |
Modeling the Impact of Behavior Changes on the Spread of Pandemic Influenza |
Valle, Sara Y. Del; Mniszewski, Susan M.; Hyman, James M. |
2012 |
2012-10-29 |
PMC |
N |
PMC7114992 |
|
10.1007/978-1-4614-5474-8_4 |
a7bhno7z |
0.449838 |
|
Raja_Sekhara_Rao_2015, Feng_2011, Chowell_2014 |
37 |
Szapudi_2020 |
Efficient sample pooling strategies for COVID-19 data gathering |
Istvan Szapudi |
2020 |
2020-04-07 |
BioRxiv |
Y |
|
|
10.1101/2020.04.05.20054445 |
nsxp3xwf |
0.439605 |
O'Dea_2010, Bocharov_2018 |
|
38 |
Ferretti_2020 |
Quantifying dynamics of SARS-CoV-2 transmission suggests that epidemic control and avoidance is feasible through instantaneous digital contact tracing |
Luca Ferretti; Chris Wymant; Michelle Kendall; Lele Zhao; Anel Nurtay; David G Bonsall; Christophe Fraser |
2020 |
2020-03-12 |
BioRxiv |
Y |
|
|
10.1101/2020.03.08.20032946 |
bc9retcq |
0.436503 |
|
Kretzschmar_2020, House_2010, Armbruster_2007 |
39 |
Torneri_2020 |
A prospect on the use of antiviral drugs to control local outbreaks of COVID-19 |
Andrea Torneri; Pieter Jules Karel Libin; Joris Vanderlocht; Anne-Mieke Vandamme; Johan Neyts; Niel Hens |
2020 |
2020-03-20 |
BioRxiv |
Y |
|
|
10.1101/2020.03.19.20038182 |
9sr5b44k |
0.436140 |
Wu_Q_2014, Mondor_2012, Li_C_2018 |
|
40 |
Shea_2014 |
Adaptive Management and the Value of Information: Learning Via Intervention in Epidemiology |
Shea, Katriona; Tildesley, Michael J.; Runge, Michael C.; Fonnesbeck, Christopher J.; Ferrari, Matthew J. |
2014 |
2014-10-21 |
COMM-USE |
N |
PMC4204804 |
25333371.0 |
10.1371/journal.pbio.1001970 |
8olbj1l8 |
0.434199 |
|
Bucini_2019, Loberg_2020, Neri_2014 |
41 |
Sippl-Swezey_2014 |
Conflicts of Interest during Contact Investigations: A Game-Theoretic Analysis |
Sippl-Swezey, Nicolas; Enanoria, Wayne T.; Porco, Travis C. |
2014 |
2014-04-14 |
COMM-USE |
N |
PMC4052784 |
24982688.0 |
10.1155/2014/952381 |
1zu3kquc |
0.433539 |
|
House_2010, Zhang_2011 |
42 |
Jenny_2020 |
Dynamic Modeling to Identify Mitigation Strategies for Covid-19 Pandemic |
Patrick Jenny; David F Jenny; Hossein Gorji; Markus Arnoldini; Wolf-Dietrich Hardt |
2020 |
2020-03-30 |
BioRxiv |
Y |
|
|
10.1101/2020.03.27.20045237 |
ngsstnpr |
0.433443 |
Zheng_2020 |
|
43 |
Andrews_2016 |
The impacts of simultaneous disease intervention decisions on epidemic outcomes |
Andrews, Michael A.; Bauch, Chris T. |
2016 |
2016-04-21 |
PMC |
N |
PMC7094134 |
26829313.0 |
10.1016/j.jtbi.2016.01.027 |
1152vpv5 |
0.432822 |
Li_C_2018, Wu_Q_2014 |
Raja_Sekhara_Rao_2015, Pharaon_2018, Pharaon_2018 |
44 |
Iacoviello_2013 |
Optimal control for SIRC epidemic outbreak |
Iacoviello, Daniela; Stasio, Nicolino |
2013 |
2013-06-30 |
PMC |
N |
PMC7126881 |
23399104.0 |
10.1016/j.cmpb.2013.01.006 |
o2t5f4s6 |
0.431725 |
Bocharov_2018, Wu_Q_2014, Li_C_2018 |
Bolzoni_2017, Raja_Sekhara_Rao_2015, Li_F_2018, Lv_W_2019 |
45 |
Zia_K_2020 |
COVID-19 Outbreak in Oman: Model-Driven Impact Analysis and Challenges |
Kashif Zia; Umar Farooq |
2020 |
2020-04-06 |
BioRxiv |
Y |
|
|
10.1101/2020.04.02.20050666 |
iua8c4hy |
0.431438 |
Li_C_2018, Bocharov_2018, O'Dea_2010, Lloyd_2009 |
Zhu_H_2020 |
46 |
Naheed_2014 |
Numerical study of SARS epidemic model with the inclusion of diffusion in the system |
Naheed, Afia; Singh, Manmohan; Lucy, David |
2014 |
2014-02-25 |
PMC |
N |
PMC7112316 |
|
10.1016/j.amc.2013.12.062 |
t0oqk88n |
0.417565 |
Li_C_2018, Labadin_2020, Bifolchi_2013, Renna_2020, Höhle_2007 |
Safi_2011, Denphedtnong_2013, Li_F_2018, Zhou_2004 |
47 |
Yap_W_2020 |
Time-variant strategies for optimizing the performance of non-pharmaceutical interventions (NPIs) in protecting lives and livelihoods during the COVID-19 pandemic |
Wei Aun Yap; Dhesi Baha Raja |
2020 |
2020-04-17 |
BioRxiv |
N |
|
|
10.1101/2020.04.13.20063248 |
180x1fvb |
0.412822 |
|
|
48 |
Acuna-Zegarra_2020 |
The SARS-CoV-2 epidemic outbreak: a review of plausible scenarios of containment and mitigation for Mexico |
Manuel Adrian Acuna-Zegarra; Andreu Comas-Garcia; Esteban Hernandez-Vargas; Mario Santana-Cibrian; Jorge X. Velasco-Hernandez |
2020 |
2020-03-31 |
BioRxiv |
Y |
|
|
10.1101/2020.03.28.20046276 |
aiq6ejcq |
0.411072 |
|
Ng_T_2003, Kretzschmar_2020 |
49 |
Ohkusa_2005 |
Prediction of smallpox outbreak and evaluation of control-measure policy in Japan, using a mathematical model |
Ohkusa, Yasushi; Taniguchi, Kiyosu; Okubo, Ichiro |
2005 |
2005-12-31 |
None |
N |
PMC7087876 |
15856374.0 |
10.1007/s10156-005-0373-3 |
1kpooq3j |
0.406407 |
|
Chin_2019, Kretzschmar_2004, Safi_2011 |
50 |
Tago_2016 |
The Impact of Farmers’ Strategic Behavior on the Spread of Animal Infectious Diseases |
Tago, Damian; Hammitt, James K.; Thomas, Alban; Raboisson, Didier |
2016 |
2016-06-14 |
COMM-USE |
N |
PMC4907430 |
27300368.0 |
10.1371/journal.pone.0157450 |
7tewne3a |
0.405086 |
|
Bucini_2019, O’Dea_2015 |
51 |
Rodriguez_2020 |
Predicting Whom to Test is More Important Than More Tests - Modeling the Impact of Testing on the Spread of COVID-19 Virus By True Positive Rate Estimation |
Paul F Rodriguez |
2020 |
2020-04-06 |
BioRxiv |
Y |
|
|
10.1101/2020.04.01.20050393 |
06vc2y9y |
0.402550 |
Li_C_2018 |
Eberhardt_2020 |
52 |
Chen_2018 |
A dynamic vaccination strategy to suppress the recurrent epidemic outbreaks |
Chen, Dandan; Zheng, Muhua; Zhao, Ming; Zhang, Yu |
2018 |
2018-08-31 |
PMC |
N |
PMC7127246 |
|
10.1016/j.chaos.2018.04.026 |
bcv1wpfb |
0.402167 |
Wu_Q_2014, Li_C_2018, Mondor_2012 |
Cai_C_2014, Zheng_2015, Raja_Sekhara_Rao_2015, Park_2016 |
53 |
Zhang_2019 |
Willingness to Self-Isolate When Facing a Pandemic Risk: Model, Empirical Test, and Policy Recommendations |
Zhang, Xiaojun; Wang, Fanfan; Zhu, Changwen; Wang, Zhiqiang |
2019 |
2019-12-27 |
COMM-USE |
N |
PMC6981847 |
31892171.0 |
10.3390/ijerph17010197 |
2sxy3spd |
0.400167 |
|
Zhang_2011 |
54 |
Pawelek_2015 |
Connecting within and between-hosts dynamics in the influenza infection-staged epidemiological models with behavior change |
Pawelek, Kasia A.; Salmeron, Cristian; Del Valle, Sara |
2015 |
2015-09-01 |
PMC |
N |
PMC5654582 |
29075652.0 |
10.1166/jcsmd.2015.1082 |
bl6ih0yf |
0.400145 |
|
Raja_Sekhara_Rao_2015 |
55 |
Wood_2007 |
Effects of Internal Border Control on Spread of Pandemic Influenza |
Wood, James G.; Zamani, Nasim; MacIntyre, C. Raina; Becker, Niels G. |
2007 |
2007-07-23 |
None |
N |
PMC2878213 |
18214176.0 |
10.3201/eid1307.060740 |
8d4f4gmw |
0.397979 |
|
Chin_2019 |
56 |
Peak_2018 |
Prolonging herd immunity to cholera via vaccination: Accounting for human mobility and waning vaccine effects |
Peak, Corey M.; Reilly, Amanda L.; Azman, Andrew S.; Buckee, Caroline O. |
2018 |
2018-02-28 |
COMM-USE |
N |
PMC5847240 |
29489815.0 |
10.1371/journal.pntd.0006257 |
5yn52cuh |
0.394621 |
|
Chin_2019 |
57 |
Parvin_2012 |
An analytic framework to develop policies for testing, prevention, and treatment of two-stage contagious diseases |
Parvin, Hoda; Goel, Piyush; Gautam, Natarajan |
2012 |
2012-03-14 |
PMC |
N |
PMC7087586 |
|
10.1007/s10479-012-1103-8 |
vf3lwf66 |
0.378565 |
|
Park_2016, Bolzoni_2017 |
58 |
Merl_2009 |
A Statistical Framework for the Adaptive Management of Epidemiological Interventions |
Merl, Daniel; Johnson, Leah R.; Gramacy, Robert B.; Mangel, Marc |
2009 |
2009-06-05 |
COMM-USE |
N |
PMC2688756 |
19503812.0 |
10.1371/journal.pone.0005807 |
fa7s7xj5 |
0.377666 |
Bocharov_2018, Chowell_2017 |
Shea_2014, Raja_Sekhara_Rao_2015 |
59 |
Turk_2020 |
Modeling COVID-19 latent prevalence to assess a public health intervention at a state and regional scale |
Philip J. Turk; Shih-Hsiung Chou; Marc A. Kowalkowski; Pooja P. Palmer; Jennifer S. Priem; Melanie D. Spencer; Yhenneko J. Taylor; Andrew D. McWilliams |
2020 |
2020-04-18 |
BioRxiv |
Y |
|
|
10.1101/2020.04.14.20063420 |
j5o8it22 |
0.377638 |
|
|
60 |
Ahn_I_2018 |
Investigation of nonlinear epidemiological models for analyzing and controlling the MERS outbreak in Korea |
Ahn, Inkyung; Heo, Seongman; Ji, Seunghyun; Kim, Kyung Hyun; Kim, Taehwan; Lee, Eun Joo; Park, Jooyoung; Sung, Keehoon |
2018 |
2018-01-21 |
PMC |
N |
PMC7094113 |
29031518.0 |
10.1016/j.jtbi.2017.10.004 |
v3n9ff16 |
0.374705 |
Li_C_2018 |
Xia_Z_2015, Kim_Y_2016 |
61 |
Hochberg_2020 |
Importance of suppression and mitigation measures in managing COVID-19 outbreaks |
Michael E. Hochberg |
2020 |
2020-04-02 |
BioRxiv |
Y |
|
|
10.1101/2020.03.31.20048835 |
4fkb1udl |
0.374524 |
Wu_Q_2014, Li_C_2018, Welch_2011 |
Kretzschmar_2020, Kretzschmar_2004, Safi_2011, Kucharski_2015 |
62 |
Dansu_2019 |
A model for epidemic dynamics in a community with visitor subpopulation |
Dansu, Emmanuel J.; Seno, Hiromi |
2019 |
2019-10-07 |
PMC |
N |
PMC7094103 |
31228488.0 |
10.1016/j.jtbi.2019.06.020 |
by3wkbtl |
0.370204 |
|
Denphedtnong_2013, Sherborne_2015, Guo_W_2018, Fan_K_2020 |
63 |
White_2014 |
Determining the dynamics of influenza transmission by age |
White, Laura F; Archer, Brett; Pagano, Marcello |
2014 |
2014-03-21 |
COMM-USE |
N |
PMC3997935 |
24656239.0 |
10.1186/1742-7622-11-4 |
jvdph782 |
0.368918 |
|
Kucharski_2015, Stein_2014 |
64 |
Shams_2015 |
On the impact of epidemic severity on network immunization algorithms |
Shams, Bita; Khansari, Mohammad |
2015 |
2015-12-31 |
PMC |
N |
PMC7126281 |
26505554.0 |
10.1016/j.tpb.2015.10.007 |
tahmgsas |
0.368444 |
Li_C_2018, Wu_Q_2014, Li_K_2011, Welch_2011, O'Dea_2010 |
Wu_Q_2014, Xu_Z_2014, Chen_2018, Xia_C_2013 |
65 |
Wang_2016 |
Model of epidemic control based on quarantine and message delivery |
Wang, Xingyuan; Zhao, Tianfang; Qin, Xiaomeng |
2016 |
2016-09-15 |
PMC |
N |
PMC7127083 |
|
10.1016/j.physa.2016.04.009 |
68op3d8t |
0.363951 |
Li_C_2018, Wu_Q_2014, Bifolchi_2013 |
Denphedtnong_2013, Safi_2011, Chen_2018, Shanlang_2020 |
66 |
Scala_2020 |
Between Geography and Demography: Key Interdependencies and Exit Mechanisms for Covid-19 |
Antonio Scala; Andrea Flori; Alessandro Spelta; Emanuele Brugnoli; Matteo Cinelli; Walter Quattrociocchi; Fabio Pammolli |
2020 |
2020-04-14 |
BioRxiv |
Y |
|
|
10.1101/2020.04.09.20059592 |
bf098qcr |
0.363891 |
Li_C_2018 |
|
67 |
Wang_2009 |
Optimal Time Delay in the Control of Epidemic |
Wang, Zhenggang; Szeto, Kwok Yip; Leung, Frederick Chi-Ching |
2009 |
2009-01-01 |
PMC |
N |
PMC7122778 |
|
10.1007/978-3-642-03211-0_21 |
4outpiwu |
0.363003 |
Bocharov_2018, Chowell_2017, Bifolchi_2013 |
Bolzoni_2017, Raja_Sekhara_Rao_2015, Chen_2018, Safi_2011 |
68 |
Xu_Z_2014 |
Comparative Analysis of the Effectiveness of Three Immunization Strategies in Controlling Disease Outbreaks in Realistic Social Networks |
Xu, Zhijing; Zu, Zhenghu; Zheng, Tao; Zhang, Wendou; Xu, Qing; Liu, Jinjie |
2014 |
2014-05-02 |
COMM-USE |
N |
PMC4008523 |
24787718.0 |
10.1371/journal.pone.0095911 |
z9nwechy |
0.359202 |
Wu_Q_2014, Salathé_2010 |
Song_2015, Yuan_2015, Wu_Q_2014 |
69 |
Wang_2015 |
An Epidemic Patchy Model with Entry–Exit Screening |
Wang, Xinxin; Liu, Shengqiang; Wang, Lin; Zhang, Weiwei |
2015 |
2015-05-15 |
PMC |
N |
PMC7088875 |
25976693.0 |
10.1007/s11538-015-0084-6 |
fsbohzw0 |
0.359051 |
|
Kretzschmar_2004, Denphedtnong_2013, Kretzschmar_2020, Park_2016 |
70 |
Alvarez-Zuzek_2017 |
Epidemic spreading in multiplex networks influenced by opinion exchanges on vaccination |
Alvarez-Zuzek, Lucila G.; La Rocca, Cristian E.; Iglesias, José R.; Braunstein, Lidia A. |
2017 |
2017-11-09 |
COMM-USE |
N |
PMC5679524 |
29121056.0 |
10.1371/journal.pone.0186492 |
w32agvoj |
0.355113 |
|
Kan_J_2017, Huang_2020, Van_Segbroeck_2010, Xu_Z_2014 |
71 |
Kretzschmar_2004 |
Ring Vaccination and Smallpox Control |
Kretzschmar, Mirjam; van den Hof, Susan; Wallinga, Jacco; van Wijngaarden, Jan |
2004 |
2004-05-23 |
PMC |
N |
PMC3323203 |
15200816.0 |
10.3201/eid1005.030419 |
qwq46b8a |
0.351275 |
Wu_Q_2014 |
Kucharski_2015, Safi_2011, Ohkusa_2005 |
72 |
Bolzoni_2017 |
Time-optimal control strategies in SIR epidemic models |
Bolzoni, Luca; Bonacini, Elena; Soresina, Cinzia; Groppi, Maria |
2017 |
2017-10-31 |
PMC |
N |
PMC7094293 |
28801246.0 |
10.1016/j.mbs.2017.07.011 |
4dzqzwx0 |
0.349343 |
Li_C_2018, Wu_Q_2014, Lauro_2020 |
Iacoviello_2013, Chen_2018, Yan_X_2008, Raja_Sekhara_Rao_2015 |
73 |
Mercker_2020 |
What influences COVID-19 infection rates: A statistical approach to identify promising factors applied to infection data from Germany |
Moritz Mercker; Uwe Betzin; Dennis Wilken |
2020 |
2020-04-17 |
BioRxiv |
Y |
|
|
10.1101/2020.04.14.20064501 |
09nvausz |
0.346827 |
Li_C_2018 |
|
74 |
Luo_W_2016 |
Visual analytics of geo-social interaction patterns for epidemic control |
Luo, Wei |
2016 |
2016-08-10 |
COMM-USE |
N |
PMC4980799 |
27510908.0 |
10.1186/s12942-016-0059-3 |
vk91ovlf |
0.337254 |
Bocharov_2018 |
Luo_W_2018, Chen_2007 |
75 |
Nicolaides_2019 |
Hand-hygiene mitigation strategies against global disease spreading through the air transportation network |
Christos Nicolaides; Demetris Avraam; Luis Cueto-Felgueroso; Marta C. González; Ruben Juanes |
2019 |
2019-01-26 |
BioRxiv |
N |
|
|
10.1101/530618 |
l353fvsp |
0.330529 |
|
Denphedtnong_2013, Bucini_2019 |
76 |
Tennenholtz_2020 |
Sequential Vaccination for Containing Epidemics |
Guy Tennenholtz; Constantine Caramanis; Shie Mannor |
2020 |
2020-04-14 |
BioRxiv |
N |
|
|
10.1101/2020.04.13.20060269 |
ql8lq5jv |
0.320063 |
Wu_Q_2014 |
Raja_Sekhara_Rao_2015, Wu_Q_2014, Kretzschmar_2004, Chen_2018 |
77 |
Ejima_2013 |
The Impact of Model Building on the Transmission Dynamics under Vaccination: Observable (Symptom-Based) versus Unobservable (Contagiousness-Dependent) Approaches |
Ejima, Keisuke; Aihara, Kazuyuki; Nishiura, Hiroshi |
2013 |
2013-04-12 |
COMM-USE |
N |
PMC3625221 |
23593507.0 |
10.1371/journal.pone.0062062 |
xjfdin77 |
0.314539 |
Bocharov_2018, Bifolchi_2013, Chowell_2017, Wu_Q_2014, O'Dea_2010 |
Raja_Sekhara_Rao_2015, Wells_2011, Nishiura_2009 |
78 |
Xu_P_2020 |
Applying chemical reaction transition theory to predict the latent transmission dynamics of coronavirus outbreak in China |
Peng Xu |
2020 |
2020-02-25 |
BioRxiv |
Y |
|
|
10.1101/2020.02.22.20026815 |
sjod3q3j |
0.308777 |
|
Shi_P_2020, Yong_2016 |
79 |
Young_2019 |
Consequences of delays and imperfect implementation of isolation in epidemic control |
Young, Lai-Sang; Ruschel, Stefan; Yanchuk, Serhiy; Pereira, Tiago |
2019 |
2019-03-05 |
COMM-USE |
N |
PMC6401305 |
30837533.0 |
10.1038/s41598-019-39714-0 |
3bpcf28i |
0.307406 |
|
Kretzschmar_2020, Kretzschmar_2004, Safi_2011, Bolzoni_2017 |
80 |
Zhang_2011 |
Risk estimation of infectious diseases determines the effectiveness of the control strategy |
Zhang, Haifeng; Zhang, Jie; Li, Ping; Small, Michael; Wang, Binghong |
2011 |
2011-05-15 |
PMC |
N |
PMC7114255 |
|
10.1016/j.physd.2011.02.001 |
g5l93qld |
0.306372 |
|
Denphedtnong_2013, Raja_Sekhara_Rao_2015, Herrera-Diestra_2019, Pharaon_2018 |
81 |
Hochberg_2020 |
Countries should aim to lower the reproduction number R close to 1.0 for the short-term mitigation of COVID-19 outbreaks |
Michael E. Hochberg |
2020 |
2020-04-17 |
BioRxiv |
Y |
|
|
10.1101/2020.04.14.20065268 |
f36smzln |
0.302941 |
|
|